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ABSTRACT

A study of the histories of solar flares observed at 2 cm
at the North Liberty Radio Observatory of the University of Iowa
and observed at x-ray wavelengths with Mariner V (2-9 A) and
Explorers 33 and 35 (2-12 A) shnows that "post-burst increase"
and "gradusl rise and f3ll" events are conéurrent microwave and
soft x-ray phenomena. The correlgtion between the x-ray flux
and'the radio flux is high but non-linear. The character of the
correlation is consistent with a thermal flare theory in which
the volume emissivity at x-ray wavelengths is of the spectral
form (dE/dv) ~ exp(-hv/kT) and the radio flux is from the same
region which is optically thick with a temperature T. The
correlation yields the peak flare temperature, Tp, and the flare
solid angle in terms of the fractional increase in temperature
relative to the peak temperature, F = 6T/Tp. Comparing flare
sizes with those obtained by other means (e.g., x-ray telescopes)
shows F > 0.2. 1If free-free emission is assumed responsible for
both the x-ray and the radio emissions, an F ~ 0.5 is consistent
with the initial assumptions while an ¥ ~ 1.0 is not. Thus,
temperatures typically double during a flare. Of twenty cases
studied, an F = 0.5 yieided a mean peak temperature of 4 million

degrees Kelvin and a mean effective diameter of 32 arc seconds.



I. INTRODUCTION

Solar radio emissions are conventionally divided into
three components, the quiet sun component, the slowly varying
component, and the burst component. The x-ray counterparts to
the first two components were discussed in part 1 [Wende, 1969].
X-ray flares, or bursts, have been divided into two classes, one
of flares originating quasi-thermally and the other of flares
originating non-thermally [De Jager, 1965]. The flares that
originate non-thermally produce x-rays at wavelengths shorter
than about 1 A and are well correlated with impulsive microwave
flares such as types simple 1 and simple 2 [Kundu, 1964; Kundu,
1963; Arnoldy et al., 1968]. The quasi-thermal flares produce
x-rays at longer wavelengths, have much longer time scales
(typically tens of minutes during the decay phase), and are well
correlated with sudden ionospheric disturbances, or S.I.D.
[Kundu, 1964]. These soft x-ray bursts accompany long enduring
microwave bursts of the graduval rise and fall and post-burst
increase types [Kawabata, 1966]. This paper is limited to a

study of the quasi-thermal bursts.



ITI. INSTRUMENTATION

The x-ray data were obtained from Geiger tubes flown on the
Mariner V (2-9 A), Explorer 33 (2-12 A), and Explorer 35 (2-12 A)
spacecrafts. The calibration of these Geiger tubes was discussed
in part 1. The x-ray flux, in millierg em™® sec™t over the specified
bandwidth is proportional to the counting rate (after appropriate
dead time corrections), and thus counting rate and x-ray flux may
be used interchangeably.

The microwave data used in this séudy were taken by the solar
patrol operated by the University of Iowa at the North Liberty Radio
Observatory (NLRO). The antenna is an equatorially mounted parab-
oloid four feet in diameter. The receiver is of a Ryle-Vonberg
type in which the antenna noise is balanced against the noise from
a gas discharge tube-precision attenuator system. The stepping
motor in the servo system limits the thermal resolution to about
4 degrees Kelvin. The radio flux can be given either as a flux
density, in watt M-2 Hz_l, or a8 an equivalent antenna temperature
in degrees Kelvin. The wavelength of 1195 cm (a frequency of
15,375 MHz) is such that the normal corona is optically thin and
éhe upper chromosphere is optically thick. The frequency is well
above the plasma frequency of any observable region of the solar

atmosphere.



IIT. SIGNIFICANCE OF THE MEASUREMENTS

Before examining the correlation between the soft x-ray flux
and the radio flux, it is useful to examine the physical significance
of the Geiger tube counting rates and the antenna tempersature.

The Geiger tube counting rate is giwven by:

R = £ [av [av (a8,/av) e(v) ()™t & (b )7L (1)
dJ
where R = the Geiger tube counting rate in counts sec'l,
dV = an increment of the volume emitting x rays,
dv = the frequency increment,
(dEj/dv) = the energy emissivity of a volume element,
in erg em™> Hz™L sec'l,
€(v) = the photon efficiency of the Geiger tube at
frequency v,
h = Planck's constant,
a = the effective area of the Geiger tube in cmg,
r = the sun-spacecraft distance, and

s = the summation over all types of emission

mechgnisms.



Three mechanisms may contribute significantly to the x-ray emission
from the sun. They are free-free emission (thermal bremsstrahlung),
free-bound emission (radiative recombination), and bound-bound
(1ine) emission.

The volume emissivity for free-free emission is [Karzas

and Latter, 1961]:

- 2 -5
(dEff/dv) = ;i;CNeNiZi (h/k)gffT exp(-hv/kT) , (2)
1
where C =6.82 % 10-58 erg cm’ deg?,
N_ = the electron density in cm_B,
e
Ni = the density of ions of effective nuclear
b)

charge Z,, in em 7,
k = Boltzmann's constant,
= the free-free Gaunt factor, of order unity,
which the ratio of the actual cross section
to the classical cross section,
T = the electron temperature, and

¥ = the summation over all ionic species present.

Inserting Eq. (2) into Eq. (1) and integrating yields a free-free

contribution for the counting rate of
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Ree = AphV T2 exp(-/T) (3)
where Rff = the counting rate due to free-free emission,
Ny = fav m_?
e
=48 2
App = 2.5 X 10 (Ni/Ne) zZ;", and
v = 13.58 million degrees Kelvin for Mariner V

(2-9 A) and 12.02 million degrees Kelvin for

the Explorer detectors (2-12 A).

The volume emissivity of free-bound emission is given by

[Elwert, 1952]:

(W /O) = Iy OgADF (g ) (5 /ey

exp((x; - w)/KT) (1)

where XH = the jonization potential of hydrogen,

the ionization potential of the final state,

.
!

n = the principal quantum number,

the number of places in the nth shell that

(Al
il

can be occupied by the captured electron, and

the free-bound Gaunt factor.



Inserting Eq. (4) into Eq. (1) yields a free-bound contribution

to the counting rate of:

L
R = A NV T , (5)

]
(17
]
o
2o}
1l

the counting rate due to free-bound emission, and

]
1l

o = 5-5 X 1077 B (0 /) (g /) (€ 0)-

Line emission due to dielectronic recombination is quite
weak and cannot be observed, although dielectric recombination
predominates over radiative recombination in determining the
jonization balance of the plasma. The photon emissivity due to

bound-bound emission from collisionally excited atoms is [Allen,

1965]:
-1 -%
(4B, /dv)(av)™" = DI E(f/Wi)NeNn 8(v -W;/n) exp(-W,/kT) ,
(6)
-4
where D=5.1x10 ,
f = the oscillator strength,
Wi = the excitation energy of the line in eV, and
Nn = the density of ions of principal quantum

number n.



The counting rate due to line emission is found by inserting Eq. (6)

into Eq. (1). The counting rate due to line emission is

Rp = Ay Ny % exp(-W, /kT) , (7)

where Rbb = the counting rate due to bound-bound emission,

oo

]

10‘1F2 z, f(Ne /NH) (NZ/Ne)e (wi) s
i

N, = the density of hydrogen atoms in cm-B,

N_ = the density of the z stage ion, in Cm—5, and
z

z, = the summation over all lines.

i

The observed counting rate is the sum of Egs. (3), (5), and

(7), or

-

) 1 _l
R = NV (Affo exp(-7/T) + AgT 2, A, T7® exp(-W, /kT)) .

(8)

For temperatures of a few million degrees Kelvin, the counting rates
due to free-free and bound-bound emission are controlled predominantly
by the temperature dependence of the exponential term. The temper-
ature dependence of free-bound emission is quiet weak due to the

limits of integration (from v = Xi/h to v . of the Geiger tube)
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and the additional exp(xi/kT). The counting rates due to all these
mechanisms are linear in NEV.

If the free-free continuum dominates over both the free-bound
continuum and the line emission, the counting rate can be approxi-

mated by
R T ANV exp(-7/T) , (9)
. 1
where A = a constant that includes the mean value of T=,

Equation (9) is a good approximation if the emissivity has the

genergl form of:
(ae/av) ~ exp(-hv/kT) . (10)

A spectrum made up of a series of lines may also be approximated
by Eq. (9). If a black-body spectrum is used, y can be re-evaluated.
It is 17.1 million degrees Kelvin for Mariner V and 14.9 million
degrees Kelvin for the Explorer detectors.

The incident radio flux density, S, can be expressed in
terms of an equivalent antenna temperature, Ta’ through the

Rayleigh-Jeans laws:
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(42}
]

2
2k T, Q /N, (11)

the antenna beam solid angle, and

]

where 0
a

the wavelength being observed.

i

The antenna beam solid angle is given by [Krauss, 1966, Eq. 3-15):

= 0,9) 4 , 2
9, j’h" P(9,%) (12)

where P(0,9) = the relative response of the antenna,

and it has a value of 5.43 X 1o'h steradians. The antenna temper-

ature is given by [Krauss, 1966, Eq. 3-116)

T, = Ilm T, (0,0) P(0,9) do/e, , (23)
where Tb(e,w) = the brightness distribution observed

by the antenna.

Since this paper is concerned with the size and temperature
of emitting regions, which can be found in part from Eq. (13), the

antenns temperature will be the preferred system of radio flux
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units. The conversion from antenna temperature, in degrees Kelvin,
to flux units, in 10722 watt meter™2 nertz~! is accomplished by
multiplying the antenna temperature by 0.h.

The brightness temperature for a given ray trajectory is
derived from the equation of transfer and is [Smerd and Westfold,

1949]:
Ty = [T (1) exp(-1) ar , (1h)

where T = the optical depth given by

T = I% ds 9 (15)
where n = the absorption coefficient in cm-l, and
ds = an increment along the ray trajectory.

It is assumed that free-free emission is the source of the observed
radio emission (neglecting the impulsive component usually attrib-
uted to synchrotron emission). The free-free absorption coefficient

determined by Ginzburg [196L4] is:
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w = 0.58 Nea T'3/2 w2 In(k.6 x 10° T w‘g/B) s (16)
where w = the observing frequency in radians sec_l.

At the observing frequency of 15,375 MHz,

3
o0 3 o
n = 1.4 x 10 2z T 2 N, log(220 T) .

Assuming that the relative antenna response, P(9,p), is
unity over the solar disc, the antenna temperature can be divided
into two components, the first due to the non-flaring portion of
the sun and terrestrial atmospheric radiation, and the second due

to the flaring region. For example,

=
i

T, + (Q/Qa) Typ s (18)

1

where T0 the background component,

|
i

bf the brightness temperature of the flaring

region, and

L]
i

the solid angle of the flaring region.

If the flaring region is optically thick (T » 1), then T ¢ is



1k

simply the electron temperature in that region, and the antenna
temperature is proportional to the electron temperature. If the
flaring region is optically thin (T << 1), evaluating Eq. (18)
for the case of a volume of hot plasma overlying a cooler mass

of plasma at a temperature To yields

Te = (T +7TI), (19)
where 7 is given by the product of # from Eq. (17) and the thick-
ness of the hot plasma, L. Inserting Eq. (19) into Eq. (18)
reveals that Ta is proportional to NEQLQ, which with a change of
units is equivalent to NQV. ‘I‘a is also proportional to T'%.

Four simple flare models exist. In all of them it is assumed
that the x-ray emissions and the radio emissions emanate from a
common volume of gas or at least one that has the same temperature
throughout. This volume of gas is characterized by a uniform
temperature T, a volumetric emission measure NQV, and, when viewed
from earth, a solid angle Q.

In model 1, the flaring region is optically thin at 2 cm
and the whole body of gas remains at a constant temperature.
The x-ray flux should correlate linearly with the radio flux as

the variable NEV is common to both emission mechanisms.
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In model 2, the flaring region is optically thick at 2 cm
and the whole body of gas remains at a constant temperature.
The x-ray and radio fluxes would correlate only if an increase
in Q is accompanied by an increase in NEV.

In model 3, the flaring region is optically thin at 2 em
and the flaring process is primarily a thermal one. The x-ray
and radio fluxes should anticorrelate, i.e., the x-ray flux should
increase as the radio flux decreases and vice versa.

In model 4, the flaring region is optically thick at 2 cm
and the flaring process is primarily a:thermal one. The fluxes
should correlate in a logarithmic sense as the radio flux is
proportional to T and the x-ray flux is proportional to exp(-y/T).
The type of correlation to be expected is illustrated in Fig. 1.
If a black-body rather than a free-free spectrum is used, the
general shape is the same. Note that for small temperature changes
the correlation is approximately semi-logarithmic or even linear.

The determination of which of the above four models is
appropriate is accomplished in the next section. The further
development of the model chosen is done in the interpretative

section.
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IV. OBSERVATIONS

Kawabata [1966] showed that long enduring microwave bursts
coincided with soft x-ray bursts.
A survey of 140 simple 1 and simple 2 events listed in

Solar Geophysical Data during June and July, 1967 showed that in

no case did the soft x-ray flux rise over 300 percent above the
x-ray background during an impulsive radio event, and in only 24
cases did the x-ray flux rise over 30 percent above the background
flux. This survey showed that the impulsive radio emissions are
probably due to a mechanism different than that of the soft x-ray
emissions.

Examples of solar bursts in which the soft x-ray and 1.95
cm radio events correlate are illustrated in Figs. 2, 3, 4, and 5.
The radio data were integrated over the same intervals during
which x-ray data were taken (e.g., a 37.2 second interval every
403 seconds for the Mariner V data), and the radio data points
correspond temporally to the x-ray data points. Impulsive radio
events which occurred during the bursts but whose fluxes did not
correlate with the soft x-ray fluxes are shown with 10 second
resolution on inserts. Typically, the soft x-ray event corresponds

to the post burst increase event observed at 2 cm, and the peak
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of the x-ray event occurs after the impulsive radio events (see
Figs. 3, 4, and 5). However, if the impulsive radio event is
superimposed upon a gradual rise and fall event, the soft x-ray
event typically tracks the gradual rise and fall event (see Fig. 2).

The Geiger tube counting rates (x-ray fluxes) are plotted
as a function of the antenna temperatures (radio fluxes) for the
bursts illustrated in Figs. 2, 3, 4, and 5 are shown in Figs. 6,
7, 8, and 9, respectively. Additional plots showing correlations
between the Geiger tube couating rates and antenna temperatures
are shown in Figs. 10, 11, and 12. Although the correlations
illustrated in Figs. 8 and 9 are approximately linear, the
correlations illustrated on the other figures are definitely
non-linear. When plotted semi-logarithmically (i.e., the logarithm
of the counting rate versus the antenna temperature), the correla-
tion between the soft x-ray and radio fluxes behaves generally in
the manner illustrated in Fig. 1.

A total of 28 sets of data (indexed 1 through 28) were
obtained for the 20 events (coded A through T) exhibiting the
above correlation. These events are listed in Table I. Table II
1lists concurrent solar activity and SID's. Seventeen of the
twenty events could be attributed to major active regions (McMath

plages 8905, 8942, 9145, 9146, 9184, and 920L4). In all but one
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case an optical flare could be associated with the bursts. S.I.D.
occurred concurrently with all of the bursts, and radio events

were observed at other frequencies with one exception.
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V. INTERPRETATICN

In choosing a flare model to apply to the observations,
it is preferable to use a model that describes all of the obser-
vations rather than just a few. For this reason, although the
correlations illustrated in Figs. 8 and 9 are linear, the non-
linearity of the other flux correlations rules out the general
applicability of model 1 described in Sec. III. Model 2 is
difficult to imagine physically, and will be passed over at this
time. Since the fluxes do not anticorrelate, model 3 is eliminated
conclusively.

Model 4, in which the correlation between the fluxes has
the character illustrated by Fig. 1, is consistent with all the
observations. The most general assumptions of this model zre

that the emissivity has the spectral form

(aE/av) ~ exp(-hv/kT) (20)

at x-ray wavelengths and that the region is optically thick at a
wavelength of 2 em such that the antenna temperature is propor-
tional to the temperature T. That is,

T, = (Q/Qa) T + constant . (21)
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The slope, S1, obtained from a graph of the logarithm of the x-ray

counting rate plotted as a function of antenna temperature is:

d1n R/3T 7 8

= ’
oT_/oT = o

s1 = (22)

where 7 and Qa are parameters of the measuring equipment and @
and T are parameters of the flare. It is convenient to define
the fractional change in the temperature of the flare, F, in

terms of the peak temperature of the flare, Tp, through:

=
I

5T/Tp , (23)

where 6T

]

the change in temperature in degrees Kelvin.

The maximum change in the antenna temperature, 8T ., is given by:

aM

8T = (Q/Qa) 8T , or (2kha)

T = (n/na) F Tp . (2Lp)

Inserting Eq. (2lb) intc Eq. (22) yields expressions for the peak

temperature Tp’ the flare solid angle Q, and the effective diameter
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of the flare d. These are:

o= 2 , in degrees Kelvin, (25a)
P 81 6T
aM
S1 Qa 6T§M

@ = ———%— , in steradians, and (25b)

y F

11 %

a = (s1 Qa/l.85 X 1077 ¥) (6TaM/F) 5 (25¢)

in arc seconds .

Since F is always less than unity, the asbove expressions yield
maximum allowable temperatures and minimum allowable sizes when
F is set equal to one.

Appropriate values of F must next be determined. An F of
order lO_l implies that the temperature did not change appreciably
during the flare. However, the smaller the temperature change,
the larger the area of the flare. For the 20 flares studied, the
mean effective flare diameter (assuming F = 1) is about 16 arc
seconds. The upper limit for the size given by Paolini et al.
[1968] for a flare observed by 0SO IV was 60 arc seconds. Thus
F must be greater than 0.27 in order that the d's calculated from

Eq. (25c) not exceed 60 arc seconds.
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To proceed further, one must specify the exact emission
mechanism responsible for the x-ray radiation. For the sake of
simplicity, the free-free component is chosen. Assuming (Ni/Ne)
and Zi equal unity, and since for a given wvalue of F the area of
the flare is known, Eq. (3) yields an expression for the emission
measure, NEL,

1
NEL = 7.7 X 1051L 7% g2 exp(7/T) , (26)

where d = the diameter of the flare in arc seconds.
Equation (15) can be cast into the form of:
T = 1.06 X 10°° r 72 g2 log(220 T) exp(y/T) (27)

through the use of Egs. (26) and (17). Using a typical maximum
allowgble temperature of 5 million degrees Kelvin, a typical
minimm allowable flare diameter of 15 arc seconds and a typical
peak counting rate of 10° counts sec-l, Eq. (27) was solved for
F's of 1.0, 0.75, 0.66, and 0.5. In these cases the flare temper-
ature was infinity times the initial temperature, U4 times, 3 times,

and 2 times the initial temperature, respectively. The optical
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depths obtained at 2 cm were 0.17, 0.42, 0.62, and 2.0, respectively.
It is concluded that flare temperatures typically double during the
course of a flare, at least in that region‘that is responsible for
the thermal radio and soft x~ray emissions.

For the twenty bursts studied, the distribution of flare
diameters and peak temperatures assuming F = 0.5 is illustrated
in Fig. 13. For most of the flares it is not necessary to invoke
temperatures higher than about 5 million degrees Kelvin. This
result is concordant with a result of Acton [1968]. The assumption
that the x-ray spectrum is dominated by the continuum is consistent
with the findings of Meekins et al. [1968], but the temperatures
they derived were half an order of magnitude higher than those
determined in this study. 1In a photoéraph taken with an x-ray
telescope flown on a rocket, Vaiana et al. [1968] observed a flare
composed of two main structures, each several minutes of arc long
and about 20 arc seconds across. This structure would yield an
effective diameter of about 7O arc seconds, and would allow values
of F somewhat smaller than the lower limit of 0.27 derived from
the earlier OSO IV observations.

For a flare to satisfy the requirement of a large optical
thickness at 2 em, it must originate from a region with an abnor-

mally high electron density which probably is also characterized
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by an abnormally high temperature. For example, if the flaring
region had a thickness, L, of 25,000 km, an electron density of

101l cn™

, and a temperature of 4 million degrees Kelvin, from

Eg. (17) it had an optical depth of 3.8. The plasma frequency

of this region would be about 450 MHz, or well below the 15,375
Mz observing frequency, and plasma effects would be negligible.
From Eq. (26), assuming that L was about the same as thé effective

diameter d, typical values of N, were 5 X 10%° e,

Electrons
densities of this order are not unrealistic [cf. Acton, 1968].
The flaring region may contribute a large portion of the
quiescent x-ray flux. This possibility has been indicated from
observations with pin hole cameras [Friedman, 1964], x-ray
telescopes [Reidy et al., 1968; Underwood and Muney, 1968;
Underwood, 1968; Vaiana et al., 1968], and slit scan spectro-
meters [Blake et al., 1965] which show that the major portion
of the quiet X-ray flux originates in x-ray plages, the size of
the plage becoming smaller as the wavelength observed becomes
shorter. Almost all of the radiation at wavelengths shorter than
11 to 15 A is emitted from the hot core region of x-ray plages,
which is less than one arc minute in diameter. Similar hot core

regions have also been observed in the slowly varying component

observed at 2 cm [Nagnibeda, 1968].
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The fact that 17 of the 20 observed cases could be atiributed
to major active regions is consistent with the picture that major
active regions that produce flares are contributing substantially
to the quiescent x-ray flux. 1In part 1, it was noted that when
these regions disappear behind the limb, the quiescent x-ray flux
may drop by a factor of 10. The problem is then posed of deter-
mining how much of the major active region is involved in the
flaring process. In the 2-12 A region of the spectrum, the size
of the hot cores approaches the size of the flare itself. One
is led to speculate that the mechanism that gives rise to the
correlative radio and soft x-ray events, being thermal in nature,
is caused by relatively abrupt perturbations in the temperature
history of the plages.

This speculation leads to the problem of determining the
amount of the background x-ray flux to be subtracted when plotting
the correlation between the soft x-ray flux and the radio flux.
If the x-ray events occur in the hot core regions of the x-ray
plage which dominate the quiescent x-ray flux, then only a small
percentage of the pre-flare background x-ray flux should be
subtracted, perhaps as little as 10 percent. If the flaring
region contributed very little to the pre-flight x-ray flux, then

virtually all of the pre-flare background flux should be subtracted.
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For this reason two sets of points are given on the right hand
panel of Figs. 6 through 12. The boxed points were determined

by subtracting a background of 70 to 100 percent of the pre-flare
counting rate. The correlation obtained without subtracting a
background flux is shown by solid lines (corresponding to dotted
points), and the correlation obtained when a background is sub-
tracted is shown by a dashed line (corresponding to boxed points).
Those cases in which 100 percent of the background counting rate
were subtracted (e.g., Figs. 6, 11, and 12) may be considered
extreme examples. The true curve would be expected to lie between
the solid line and the dashed line. As the slope was taken at

the peak of the flare, the effect of subtracting or not subtracting

a background counting rate was minimized.
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VI. CONCLUSION

From the observed non-linear correlation between soft x-ray
and microwave flares of the gradual rise and fall and post burst
increase types it is possible to determine the peak temperature
of the flare and the effective diameter of the flare in terms of
a factor F, which is the quotient of the change in temperature
divided by the peak temperature. A thermal model of the flare
is required with only two assumptions, that (dE/dv) ~ exp(-hv/kT)
and that the optical depth at radio frequencies is greater than
unity. If the additional assumption is made that free-free
emission along is responsible for the x-ray emissions, an upper
limit on F of/O.S can be determined. Non-thermal processes were
not considered as they were not needed to describe the observa-
tions, although a non-thermal model may be valid. In handling
the data, it does not seem reasonable to subtract the entire
pre-flare x-ray flux as there are grounds for believing that the
flaring region may contribute significantly to the quiescent

background x-ray flux.
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FIGURE CAPTIONS

1. The relative counting rate, Rr’ obtained from x rays
emitted by free-free emission from a hydrogen plasma of a
given temperature.

2. A flare observed on 24 July 1967. On the main panels
the 2 cm data points correspond témporally to the x-ray data
points. The impulsive 2 cm bursts which accompanied the
gradual rise gnd fall x-ray and microwave events are illus-
trated with a time resolution of 10 seconds on the insert.
The three vertical lines on the main panels indicate exactly
the times of the three impulsive bursts.

3. A flare observed on 25 July 1967. On the main panels
the 2 cm data points correspond temporally to the x-ray data
points. The impulsive bursts which accompanied the post-
burst increase x-ray and microwave events are illustrated
with a time resolution of 10 seconds on the insert. The
times of the impulsive peaks are indicated by the vertical

lines on the main panels.
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L. A flare observed on 11 January 1968. On the main panels
the 2 cm data points correspond temporally to the x-ray data
points. The impulsive microwave bursts which sccompanied the
post-burst increase x-ray and microwave events are illustrated
with a temporal resolution of 10 seconds on the insert. The
times of the impulsive peaks are indicated by vertical lines
on the main panels.

5. A flare observed on 29 January 1968. On the main panels
the 2 cm data points correspond temporally to the x-ray data
points. The impulsive microwave bursts which accompanied the
post-burst increase x-ray and microwave events is illustrated
with a temporal resolution of 10 seconds on the insert. The
time of the impulsive peak is indicated on the main panel by
a vertical line.

6. The soft x-ray--microwave flux correlation of event A,
index 4. The x-ray flux is proportional to the Explorer 35
counting rate, and the microwave flux is proportional to the
antenna temperasture. On the right hand panel, the boxed
points and the dashed line indicate the results obtained when
about 100 percent of the pre-flare counting rate is subtracted

from the data.
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7. The soft x-ray--microwave flux correlation of event B,
index 6. The x-ray flux is proportional to the Explorer 35
counting rate, and the microwave flux is proportional to the
antenna temperature. On the right hand panel, the boxed
points and the dashed line indicate the results obtained when
about 70 percent of the pre-flare counting rate is subtracted
from the data.

8. The soft X-ray--microwave flux correlation of event M,
index 2]1. The x-ray flux is proportional to the Explorer 35
counting rate, and the microwave flux is proportional to the
antenna temperature. On the right hand panel, the boxed
points and the dashed line indicate the results obtained when
about 75 percent of the pre-flare counting rate is subtracted
from the data.

9. The soft x-ray--microwave flux correlation of event P,
index 24. The x-ray flux is proportional to the Explorer 35
counting rate, and the microwawve flux is proportional to the
antenna temperature. On the right hand panel, the boxed
points and the dashed line indicate the results obtained when
about 84 percent of the pre-flare counting rate is subtracted

from the data.
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10. The soft x-ray--microwave flux correlation of event C,
index 25. The x-ray flux is proportional to the Explorer 35
counting rate, and the microwave flux is proportional to the
antenna temperature. On the right hand panel, the boxed
points and the dashed line indicate the results obtained when
about 100 percent of the pre-flare counting rate is subtracted
from the data.

11. The soft x-ray--microwave flux correlation of event G,
index 13. The x-ray is proportional to the Explorer 35
counting rate, and the microwave flux is proportional to the
antenna temperature. On the right hand panel, the boxed
points and the dashed line indicate the results obtained when
about 100 percent of the pre-flare counting rate is subtracted
from the data.

12. The soft x-ray--microwave flux correlation of event I,
index 16. The x-ray flux is proportional to the Explorer 35
counting rate, and the microwave flux is proportional to the
antenna temperature. On the right hand panel, the boxed
points and the dashed line indicate the results obtained when
about 100 percent of the pre-flare counting rate is subtracted

from the data.
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Figure 13. The distribution of the peak temperatures and effective
diameters determined from the soft x-ray--microwave flux
correlations. An F = 0.5 is consistent with the theory if
free-free emission is responsiﬁle for both the x-ray and
radio emissions. The maximum possible peak temperatures,
found by setting F = 1.0, are found by doubling the magnitude
of the temperature scale (i.e., from O to 30 million degreés
Kelvin). The minimum allowable effective diameters are found
by halving the diameter scale (i.e., O to 30 arc seconds).
When two or more observations were made of the same flare,

the results were averaged.
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ABSTRACT

A study of the histories of solar flares observed at 2 cm
at the North Liberty Radio Observatory of the University of Iowa
and observed at x-ray wavelengths With Mariner V (2-9 A) and
Explorers 33 and 35 (2-12 A) shows that "post-burst increase"
and "gradual rise and fall" events are concurrent microwave and
soft X-ray phenomena. The correlation between the x-ray flux
and the radio flux is high but non-linear. The character of the
correlation is consistent with a thermal flare theory in which
the volume emissivity at x-ray wavelengths is of the spectral
form (dE/dv) ~ exp(-hv/kT) and the radio flux is from the same
region which is optically thick with a temperature T. The
correlation yields the peak flare temperature, Tp, and the flare
solid angle in terms of the fractional increase in temperature
relative to the peak temperature, F = 6T/Tp. Comparing flare
sizes with those obtained by other means (e.g., x-ray telescopes)
shows F > 0.2. If free-free emission is assumed responsible for
both the x-ray and the radio emissions, an F ~ 0.5 is consistent
with the initial assumptions while an F ~ 1.0 is not. Thus,
temperatures typically double during a flare. Of twenty cases
studied, an F = 0.5 yielded a mean peak temperature of L million

degrees Kelvin and a mean effective diameter of 32 arc seconds.



